

Some pages contain Confidential Business Information

Traditional Vehicle Group Product Portfolio

Serving multiple customers & markets globally

eMobilty

- Power Electronics
- Distribution, safety
- Charging, Hydrogen

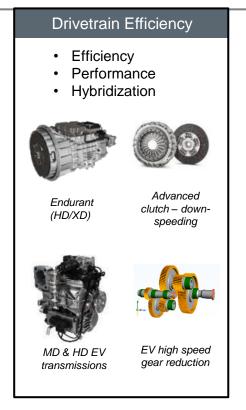
HV power electronics

On-board charging

Power distribution and protection

Connectors and busbars

Fuel Cell systems



Eaton **solutions** to address emerging needs

Focus on new technologies around low emissions and powertrain/ vehicle efficiency

48V Adoption Power creation 48V accessories System integration Power electronics 48V architecture / power management Engine de- accessorizing

Key ideas

- Eaton <u>supports the EPA</u> upcoming rule
 - · Clear targets to industry
 - Builds on the track record of Phase I and II
 - Creates certainty in technology investments that ultimately leads to <u>US technology leadership and jobs</u> opportunities.
- The segments with high VMT/ CO2 emissions are hardest to de-carbonize:
 - High number of HD ICE during Phase III, and CO2 emissions accumulating through 2040-2050
- Phase III should both
 - <u>Drive ZEV adoption</u> wherever possible
 - Incentivizes the <u>lowest possible emissions of</u>
 <u>remaining ICE-based vehicles</u>, paired with low NOx
 emissions a recent EPA rule

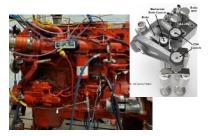
2027 NOx technologies: reductions in CO2 for ICE-based vehicles, starting in 2027, within the Phase I and II framework and methodology.

- Diesel engine CO2 set 3% lower than the corresponding Phase II 2027 limits
- Mild hybrid tractors: an additional 2-5% CO2 reduction at the vehicle level
- Strong Hybrids improve CO2 emissions by <u>15-25% in vocational cycles</u> while improving vehicle performance and productivity.

Phase III fleet-average standards, beyond accounting for ZEV, could:

- Revisit engine standards in 2027, beyond Phase II 2027
- Vehicle CO2 reductions for the balance of the fleet, beyond Phase II 2027.

ZEV trucks and buses are <u>wasting ~25% of their grid charge</u> but all ZEV trucks are the same, regardless of efficiency

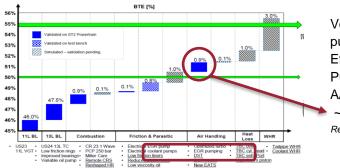

- Inefficiency: barrier to deployment, but <u>cheap energy means weak market</u> forces
- ZEV powertrain losses can be quantified in GEM (done in Europe)
- SmartWay-like program using GEM-based efficiency could drive efficiency without explicitly addressing upstream emissions and infrastructure costs

2027 NOx engine packages also lower CO2

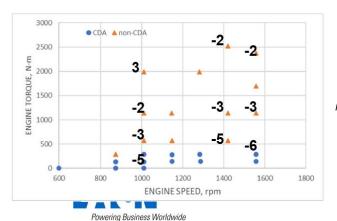
Low NOx packages achieve 1.5% CO2 reduction beyond Phase II

2018 engine + Cylinder Deactivation + Light-Off Catalyst

NOx Technology			/	Engine &	NOx for 2027	CO ₂ Base:	
CDA	LO-SCR	eHeater	Burner	Aftertreatment	0.035 g/hp-hr	513 g/hp-hr	
х				CDA B S	0.056	495 (-3.6%)	
	х			Production 3 5 5 5	0.040 to 0.060	512 (neutral)	
		X 10 kW		Production Engine	0.023	526 (+2.4%)	
			X 50 kW	Production Ergne	0.023	510 (-0.7%)	
	х	X 7 kW		Production B	0.018	521 to 524 (+1.4 to 2.1%)	
х			X 50/20 kW	CDA Ergre	0.020	521 (+1.5%)	
х	х			CDA Erysne X 1 5 5	0.018	506 (-1.5%)	
х	х	X 2.4 kW		Ergra B S S	0.012	505 (-1.5%)	
х	х		X 50/20 kW	COA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.012	518 (+0.9%)	
				Aftertreatment Aged to 430k+ miles	0.050	3% Cost	


- Low NOx packages show lower CO2 by 1.5% (not in Phase II)
- Multiple pathways based on mature, cost-effective components that were not included in the Phase II assessments
- CO2 backstop needed: some NOx technologies do increase CO2

Engine focus on additional CO2 reductions

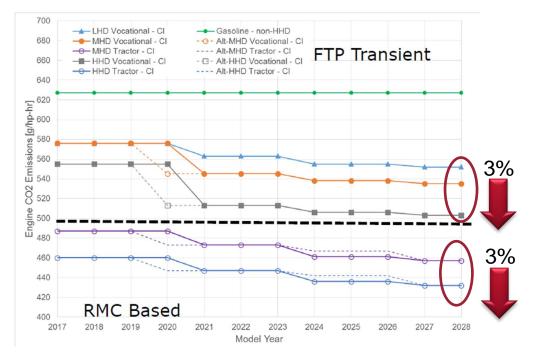


Diesel can achieve 3% CO2 reduction beyond Phase II assessment

Volvo SuperTruck: EGR pump: re-optimized High Efficiency Turbo; Pumping work; better A/F ratio control ~3% lower CO2

Ref: Volvo 2022 VTO AMR report

Cummins X15 2018 engine at SwRI shows >3% lower CO2


Ref: SAE 2021-01-1154

>3% CO2 reduction by EGR pumping demonstrated on multiple engine platforms without impact on NOx

1. Additional CO2 reductions for engines

Diesel Powertrains can achieve 4.5% CO2 reduction today

Phase II Engine standards

- Engine CO2 engine emissions improve by up to 3% vs Phase II GHG 2027 limits
- Achievable with technologies...
 - ...anyhow needed for 2027 NOx final standard
 - ...not accounted for in the Phase II rule, but developed since 2017
 - ...cost-effective* at \$200 \$700, generating economic value
 - ... with 50% compliance margin (technology entitlement is 4.5%)

*vs 2027 NOx compliance costs


ICE vehicles – beyond Phase II packages

5% less CO2 from 48V mild hybrids: an extensions of e-heater NOx

Active Heating for NOx

- All on-road OEMs are implementing minimal architectures
- Can deliver up to 1.5% CO2 reduction
- Cost: \$800 \$2,000

Increment

48V mild hybrids

- Functions: heater power, electrical accessories, electrical air conditioning, power steering
- Cost increment: \$1,700 to \$4,000
- CO2 reduction: 2% 6% (incremental)

48V mild hybrid technology can realize 5% CO2 reduction with 2-year payback based on saved fuel in the largest GHG emissions segment, incremental to low NOx technology

Confidential Business Information

ICE vehicles – beyond Phase II packages

HD Hybrids reuse investments in MD BEV for 16% CO2 reduction

HD Hybrid = [Downsized] powertrain + MD BEV e-drive + [smaller] MD BEV battery

Modified Endurant: market-leading efficiency long haul freight transmission

Medium duty motor, inverter, battery (BorgWarner, On-highway HD hybrid, up to 50 mile EV range, ultra-low NOx Akasol)

High performance vocational / off-road capable trucks

	2021	X15-based powe	ertrain	Improvement in GHG value		
	P2/P3	AT	Endurant HD	AMT vs TCA	P2/P3 vs AMT	P2/P3 vs TCA
HHD - Regional	226.0	259.7	248.2	4.4%	8.9%	13.0%
HHD-MM	255.0	303.3	285.8	5.8%	10.8%	15.9%
HHD-Urban	289.0	356.5	332.4	6.7%	13.1%	18.9%
Sleeper Cab Linehaul	85.8	97.0	93.5	3.6%	8.2%	11.5%
Day Cab Linehaul	89.6	102.9	98.5	4.3%	9.0%	12.9%

13-19% CO2 reduction in vocational trucks. 8-9% in tractors

Transmission	Time* to Reach [Sec.]						
Target speed	10 mph	30 mph	45 mph	65 mph			
P2/P3	13.0	15.7	29.6	60.3			
Allison 4000	12.0	15.1	36.7	84.9			
Endurant AMT	15.5	22.6	46.5	98.9			

Vocational space value proposition: both fuel reduction and increased productivity

Hybrid technology re-applies MD BEV investments to realize 8% CO2 reduction in regional and 16% in vocational while increasing truck capability and further reducing NOx

2. Additional CO2 reductions for ICE vehicles

Diesel trucks set to achieve 5 - 18% CO2 reduction beyond Phase II

Hypothetical category: Phase II HHD mixed

- Diesel only standard = 230 g/ton-mile
- 3 3-year roll-out (similar to Phase III)
- Non-Bev technologies:

100% ICE with 48V in 2027

Increased deployment HD hybrid 2027 through 2033

	Phase II baseline	BEV penetration	CO2 BEV correction	ICE increment	ICE tech penetration	CO2 ICE correction	Phase III limits
2027	230	10%	207	18%	33%	216.3	194.7
2030	230	20%	184	18%	67%	202.3	161.8
2033	230	30%	161	18%	100%	188.6	132.0

Adjust Phase II by BEV penetration

ICE-based vehicle adjustment for new CO2 technology

- Vehicle emissions improve by 5%
 18% additional CO2 reductions
 vs Phase II GHG final limits for
 non-BEV trucks
- Achievable with technologies...
 - ...that improve engine emissions by 3% (applicable across non-ZEV vehicles)
 - ...not accounted for in the Phase II rule, but developed since 2017
 - Increase penetration from 2027 through life of Phase III rule, achieving 100% in final year

3. HD EV efficiency needs incentives

BEV technology can reduce grid load by 24%, but needs regulatory pull

	Charge	r > Battery	Inverter	Motor	Gearbo x	Wheel	Overall
Low Tech	95%	96%	94%	93%	98%	78.1%	00 59/
						12.3%*	90.5%
High Tech.	98%	98%	99%	98%	98%	90.4%	440.20/
						28.9%*	119.2%

	Energy at wheels [year]	Effective plug- to-wheels eff.	Load on grid	Wasted energy	Cost of technology	Saved energy cost
Low Tech	24 MWh**	90.5%	26.5MWh			
Hi Tech	24 MWh**	119.2%	20.1Mwh	-24.1%	+ \$5,000	-\$640/yr

Electrical bill savings does not justify efficiency...

- 6.4 MWh / year = \$640 cost of electricity
- Hi-Tech package ~ \$4,000 \$6,000

.. but 24% reduction in load is critical for at-scale deployment

- A program like SmartWay can incentivize lower electrical energy usage and inform endcustomers to enable choice
- ZEV efficiency can be quantified precisely
 - GEM framework allows the quantification of efficiency, and Europe is already doing this in VECTO
 - SmartWay and/or Energy
 Efficiency labels are proven EPA methods to guide end-customers

wheels

^{*35%} of wheel energy is regenerated; 50% limited by motor in single speed powertrains, 5% limit with multi-speed gearbox

^{** 1.2} kW/mile x 80 miles /day x 250 miles /year = 24 MWh / year at

